
Knowledge-Based Systems 291 (2024) 111559

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

An edge-aware graph autoencoder trained on scale-imbalanced data for
traveling salesman problems
Shiqing Liu a, Xueming Yan b, Yaochu Jin a,c,∗

a Nature Inspired Computing and Engineering, Faculty of Technology, Bielefeld University, Bielefeld, 33619, Germany
b School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
c School of Engineering, Westlake University, Hangzhou, 310030, China

A R T I C L E I N F O

Keywords:
Traveling salesman problem
Graph neural network
Link prediction
Neural combinatorial optimization

A B S T R A C T

In recent years, there has been a notable surge in research on machine learning techniques for combinatorial
optimization. It has been shown that learning-based methods outperform traditional heuristics and mathe-
matical solvers on the Traveling Salesman Problem (TSP) in terms of both performance and computational
efficiency. However, most learning-based TSP solvers are primarily designed for fixed-scale TSP instances, and
also require a large number of training samples to achieve optimal performance. To fill this gap, this work
proposes a data-driven graph representation learning method for solving TSPs with various numbers of cities.
Specifically, we formulate the TSP as a link prediction task and propose an edge-aware graph autoencoder
(EdgeGAE) model that can solve TSPs by learning from various-scale samples with an imbalanced distribution.
A residual gated encoder is trained to learn latent edge embeddings, followed by an edge-centered decoder to
output link predictions in an end-to-end manner. Furthermore, we introduce an active sampling strategy into
the training process to improve the model’s generalization capability in large-scale scenarios. To investigate
the model’s practical applicability, we generate a scale-imbalanced dataset comprising 50,000 TSP instances
ranging from 50 to 500 cities. The experimental results demonstrate that the proposed edge-aware graph
autoencoder model achieves a highly competitive performance among state-of-the-art graph learning-based
approaches in solving TSPs with various scales, implying its remarkable potential in dealing with practical
optimization challenges.
1. Introduction

Combinatorial optimization problems (COPs) exist in many practical
applications of operational research (OR). Most COPs are NP-hard and
difficult to solve within a polynomial time [1]. As an important field
of research on COPs, routing problems arise in various application
scenarios such as logistics, transportation, urban planning, and sup-
ply chain management. Generally, routing problems involve planning
route scheduling solutions for a group of vehicles under constrained
conditions to make deliveries or provide services to a set of locations
efficiently. The target is to minimize the total traveling distance or over-
head with all constraints being satisfied [2]. The traveling salesman
problem (TSP) is one of the most intensively studied routing problems,
which aims to find the shortest path to traverse a set of given locations
once and return to the initial location.

As an NP-hard problem, it is non-trivial to find an efficient
polynomial-time solution via an enumeration search for TSPs with even
only hundreds of cities. Traditional methods for solving TSPs and other
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optimization problems can be generally categorized into mathematical
solvers [3–5] and hand-crafted heuristics [6–9]. A representative of ex-
act solvers is Concorde [3], which incorporates both cutting-plane and
branch-and-bound approaches for solving TSPs. For small and medium-
sized problems, exact TSP solvers can find optimal solutions with
guarantees. However, for large-scale instances, it will be intractable for
exact solvers to get an exact solution within a reasonable amount of
time due to the exponential growth of the computational complexity.
To alleviate this limitation, evolutionary algorithms (EAs) are adopted
to solve TSPs and proven to be well-suited for exploring a large search
space. However, population-based EAs often require a large number of
function evaluations, leading to huge computational costs, especially
when the evaluations are time-consuming. Additionally, EAs are unable
to learn from existing historical data, and even minor modifications to
the problem require restarting the search from scratch.

An alternative, known as neural combinatorial optimization (NCO)
[1,10], has been explored in the machine learning community from
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the perspective of data-driven optimization [1,11,12]. Instead of hand-
crafted heuristics, NCO trains neural networks in an end-to-end manner
to solve any combinatorial problems by learning directly from exist-
ing instances. Early work on learning-based approaches for routing
problems can be traced back to Hopfield networks [13] and template
models [14]. With the compelling performance of sequence-to-sequence
models [15,16], Vinyals et al. proposed a Pointer Network [17] with an
attention mechanism [18] to output TSP tours in a sequential manner.
In a similar work proposed by Bello et al. [10], the Pointer Network
is trained by an Actor-Critic reinforcement learning strategy instead of
supervised learning [17].

With the development of graph representation learning [19–21],
NP-hard routing problems are reconsidered as sequential decision tasks
on graphs [22]. Consequently, there has been a recent surge of work
on training graph neural networks (GNNs) [23–25] to solve COPs such
as routing problems [22,26,27], facility location problems [28] and
graph coloring problems [29]. Compared to OR solvers, GNN-based
methods have achieved competitive performance on small problem in-
stances [22,27,30,31]. Once trained, a GNN-based solver can generate
approximate optimal solutions in a very short period of inference time,
making it favorable for real-time decision-making. End-to-end learning
for TSPs can be categorized into autoregressive and non-autoregressive
approaches, depending on how solutions are generated. In autoregres-
sive methods, a TSP tour is constructed regressively by identifying
one city at a step [10,30,32,33]. By contrast, non-autoregressive ap-
proaches make predictions for arbitrarily large graphs in a one-shot
fashion [22,26,27,34]. In an early work [26], Nowak et al. trained
GNNs to output the prediction as an adjacency matrix of the input
graph, which is further converted into feasible solutions by beam
search. Joshi et al. [22] built on ideas from [26] and introduced the
residual gated graph ConvNet [35] for solving TSP. By extending the
work in [22], Fu et al. [36] replaced the beam search with reinforce-
ment learning techniques. The output heatmaps are fed into the Monte
Carlo tree search for TSP tours.

However, existing work on data-driven NCO approaches for TSPs
suffers from distinct drawbacks. First, most learning-based solvers are
only trained on fixed-sized TSP instances [17,22,32,33], which exhibit
poor generalization ability on test cases with a number of cities dif-
ferent from that of the training data [27]. Secondly, training such a
solver often requires millions of TSP instances with optimal solutions
to achieve a competitive performance, assuming that the model has suf-
ficient labeled data as its training dataset. However, it is non-trivial to
satisfy this assumption in practice since NP-hard problems usually have
a limited number of imbalanced optimized instances, which contain
more small-scale cases and fewer large-scale cases.

In this paper, we propose an edge-aware graph autoencoder (Edge-
GAE) framework for solving TSPs by learning from imbalanced data. In
contrast to the traditional TSP solvers that take TSP as a route planning
task and decide the next city to visit step by step, this work reformulates
TSP as a link prediction task on the graph. Each city is treated as a
node on the graph, and the optimal route can be represented by the
connections between nodes. The encoder–decoder structure is widely
adopted for traditional link prediction tasks in graph representation
learning. Nevertheless, the conventional graph autoencoder (GAE) fails
to solve TSP tasks, as its encoding–decoding process only considers
node features, overlooking the importance of edge information for TSP.
Considering that the quality of solutions to routing problems relies
highly on the edge features (i.e., Euclidean distances), we modify the
encoder with residual gated graph convolutions for the message-passing
process to learn explicit edge embeddings in the latent space. To alle-
viate the limitation of inner products where only nodes are involved,
we design an edge-centered decoder model that incorporates both
the edge and corresponding node embeddings for the link prediction
task. We adopt an active sampling (AS) strategy during the training
process by incorporating oversampling and undersampling to deal with
2

the imbalanced distribution of training data. The proposed framework
is evaluated on TSP instances with different sizes up to hundreds of
cities and compared with state-of-the-art learning-based methods in
terms of the optimal gap and the F1 score. Distinct from the traditional
learning-based TSP solvers, the main contributions of this work are
summarized as follows:

1. We first transform the TSP from a traditional path planning
problem to a link prediction task in the field of graph represen-
tation learning. Drawing on this, we redesign the structure of
the vanilla graph autoencoder and propose an edge-aware graph
autoencoder model to accommodate the TSP characteristics.

2. We tackle the challenge of extremely imbalanced data distri-
bution by introducing a random active sampling strategy into
the end-to-end training process. The incorporation of oversam-
pling and undersampling enables our model to retain strong gen-
eralization performance with only a few large-scale training
samples.

3. To validate the model performance in scale-imbalanced opti-
mization scenarios, we construct a benchmark dataset compris-
ing 50,000 TSP instances with varying scales, ranging from 50
to 500 cities. The data follows an extremely imbalanced distri-
bution where the number of instances is inversely proportional
to the number of cities. Comprehensive experiments based on
the benchmark demonstrate that the proposed EdgeGAE outper-
forms other learning-based methods for solving TSPs.

The remainder of this article is organized as follows. Section 2 gives
a literature review of existing work on learning-based NCO methods for
TSPs and their generalization ability. Section 3 provides the problem
formulation and elaborates the proposed methodology in detail. The
experimental results and analyses of these results are presented in
Section 4. Section 5 concludes the paper and outlines future work.

2. Related work

Several attempts have been made to improve the generalization
ability of machine learning methods for routing problems such as
TSPs [36–39]. An intuitive approach is to decompose a large-scale
problem into a group of sub-problems and solve them separately. Fu
et al. [36] proposed to train a graph convolutional-based model on
small-scale instances and generalize the pre-trained model to instances
whose size is larger than that of the training data by using graph
sampling and heatmap merging techniques. Specifically, a large num-
ber of instances with a fixed small size are first randomly generated
and optimized by Concorde. Then a graph convolutional network [35]
is trained on the generated data in a supervised manner, following
the same model and framework in [22]. The trained model outputs a
heatmap for the input graph as the probability prediction of each edge
appearing in the optimal solution. When testing on TSP instances with
a larger scale than those seen in the training dataset, the input graph
is first decomposed into smaller subgraphs which consist of exactly
the same number of vertices as the training data. The pre-trained
model is adopted to output heatmaps for each subgraph separately,
and then these heatmaps are merged into a complete heatmap as the
edge prediction for the original input instance. Finally, the Monte
Carlo tree search [40] strategy is adopted to convert the heatmaps
into feasible solutions to TSPs. Similarly, Luo et al. [38] proposed a
Light Encoder and Heavy Decoder (LEHD) model. The LEHD model
adaptively captures the relationships among nodes of varying sizes
dynamically, enhancing its ability to generalize across problems of
diverse scales.

While such decomposition-based approaches are simple to imple-
ment, they also come with several limitations. The pre-trained model
can only be trained on graphs of a fixed size with a predefined number
of vertices (𝑚), which may introduce an additional process to iden-

tify the optimal hyperparameter 𝑚. When tackling TSP instances of



Knowledge-Based Systems 291 (2024) 111559S. Liu et al.

t
d
A
o
t
i
h
g
t
t
i
a
o

t
4
g
e
n
c
o
m
l
i
s
K
t
c
v
f
S
T
h
d
a
r
e
s
a
t
l
w
t
s
b
r
r
i
c
o
W
P
N
d

2
w
i
l
i
a
s
f
e

t
g
a
d
e
d
t
b
3
s
a
t
e
v
r
d
i
e
G
s
t
q
e

3

f
f
w
e
C
i
s
a
g
p

3

e
t
t
t

an arbitrarily large size, it is required to decompose a large graph
into subgraphs that have exactly the same number of 𝑚 vertices as
he training data. As a result, it can easily lead to overlaps between
ifferent subgraphs, posing difficulty in solving the original problem.
dditionally, the complete heatmap is created by combining a number
f sub-heatmaps that only consider the corresponding local informa-
ion, overlooking the global knowledge of the original graph. Finally,
t should be noted that the decomposition-based approach requires a
uge amount of training data, for example, 990,000 TSP instances are
enerated for the pre-trained model in [36]. An alternative is to transfer
he knowledge learned from small-scale instances into the optimiza-
ion process of large-scale instances. For example, Zhang et al. [41]
ntroduced progressive distillation into the training of NCO models by
dopting curriculum learning to train TSP samples in an increasing
rder of the problem sizes.

Other work combines deep learning methods with traditional heuris-
ics to achieve a good generalization ability on large-scale problems [1,
2,43]. Traditional heuristic approaches are delicately designed with
reat interpretability based on decades of expert knowledge and experi-
nce [44]. With the advances in machine learning techniques, powerful
etwork models are trained to learn inherent knowledge and extract
omplex patterns from known instances to enhance the performance
f traditional heuristics [1]. Ye et al. [45] proposed a neural-enhanced
eta-heuristic algorithm named DeepACO to leverage reinforcement

earning in the heuristic designs of ant colony optimization. NeuroLKH
s a representative work proposed by Xin et al. [42]. In NeuroLKH, a
parse graph network (SGN) is combined with the strong heuristic Lin–
ernighan–Helsgaun (LKH) [46,47] for solving TSP instances. In the

raditional LKH, an edge candidate set is pre-defined based on hand-
rafted rules for the 𝜆-opt searching process [48], and node penalty
alues are iteratively optimized via sub-gradient optimization to trans-
orm the edge distances for the searching process. NeuroLKH trains an
GN model to generate edge scores and node penalties simultaneously.
hen the edge scores are used to create an edge candidate set instead of
and-crafted rules, and the node penalties are used to transform edge
istances without performing iterative optimization for each instance
s the traditional LKH does. The SGN model is trained on a wide
ange of instances with different sizes, which are optimized by the
xact solver Concorde. When generalized to larger instances, the edge
cores in SGN can be directly adopted without any modification, but
fine-tuning step is required to adapt the scale of the node penalties

o large sizes. Similarly, VSR-LKH [43] combines three reinforcement
earning strategies (Q-learning [49], Sarsa [50] and Monte Carlo [40])
ith the traditional LKH algorithm for solving TSP. It replaces the fixed

raversal operation in LKH and enables the algorithm to choose each
earch step by learning from reinforcement learning strategies. Inspired
y the great success achieved by Large Language Model (LLM) [51]
ecently, Liu et al. [52] proposed an evolutionary optimization algo-
ithm assisted by a Large Language Model by incorporating the LLM
nto the paradigm of evolutionary computation. The proposed method
an automatically evolve the elite-guided local search algorithms which
utperform human-designed algorithms in solving small-scale TSPs.
ang et al. [53] proposed a novel approach named Adaptive Staircase

olicy Space Response Oracle to address the generalization issues of
CO, aiming to help neural solvers explore and adapt to different
istributions and various problem scales.

A recent research in [27] brings together several recent works [22,
6,32,33] on learning-based TSP approaches into a uniform pipeline,
ith the aim to investigate various components in the algorithm that

nfluence the generalization ability, including the model construction,
earning paradigms and inductive biases [54]. To this end, the TSP
s considered as a sequential decision-making task on graphs [22],
nd a unified end-to-end learning pipeline is constructed with five
tages. The first stage is the problem definition, where the TSP is
ormulated as a fully connected graph [30]. The weight value of each
3

dge can be directly determined by the Euclidean distance according
o the coordinates of the cities. For better computational efficiency and
eneralization, the graph can be sparsified via a priori knowledge such
s 𝑘-nearest neighbors [22,34,36]. The second stage is graph embed-
ing, where the GNN models are usually trained to output latent space
mbeddings for nodes and edges of the input graph [23,24,55]. Solution
ecoding and search process takes place in the next two stages. The la-
ent embeddings are transformed into probability values for each edge
elonging to the optimal solution set via either autoregressive [30,32,
3,56,57] or non-autoregressive manners [22,26,34,36,58]. Then fea-
ible solutions to the original problem are generated via graph search
pproaches such as beam search and greedy search [22,59,60]. Finally,
he entire model is trained in an end-to-end manner by imitating an
xpert via supervised learning [22,34], or by minimizing a cost function
ia reinforcement learning [10,33]. The controlled experiments in [27]
eveal several insights into zero-shot generalization. Concretely, the
ominant evaluation approach tends to obscure the limited general-
zation ability, as the model performance is evaluated on fixed or
xcessively small TSP instances. The generalization performance of the
NN-based models benefits from dedicated redesign by considering

hifting graph distributions. Compared to non-autoregressive decoding,
he autoregressive manner improves generalization by imposing a se-
uential bias. However, it significantly increases the inference time,
specially as the size of the instances grows.

. The proposed methodology

In this section, we propose our learning-based EdgeGAE approach
or solving TSPs of various sizes from a link prediction perspective. We
irst define the TSP on graphs and outline the overall framework. Then
e develop a novel edge-aware residual graph autoencoder model with
nhanced graph representation and edge-centered decoding scheme.
onsidering the various scales and imbalanced distribution of the train-

ng data, we design a training strategy with batch encoding and active
ampling to improve the generalization ability. Finally, we construct
TSP benchmark dataset composed of 50,000 instances-solution pairs

enerated by Concorde to simulate the scale-imbalanced distribution in
ractical scenarios.

.1. Overall framework

In this paper, we consider the 2-D Euclidean symmetric TSP, where
ach city has a two-dimensional coordinate, and the distance between
wo cities is independent of the traveling direction. It aims at finding
he shortest route for a salesman to visit each city once and return to
he departure city. Given a TSP instance with 𝑁 cities, the input is a

set of order-invariant nodes 𝑆 =
{

𝑥𝑖
}𝑁
𝑖=1 where 𝑥𝑖 ∈ R2 represents the

2-D coordinates of the 𝑖th node. A feasible solution to the problem is a
permutation of 𝑁 nodes 𝝅 =

{

𝜋1, 𝜋2,… , 𝜋𝑁
}

where 𝜋𝑖 is the index of
the 𝑖th node in the permutation. Assume that the salesman starts from
city 𝑥𝜋1 and traverses all the cities in the order of the permutation 𝝅
until 𝑥𝜋𝑁 and finally returns to the departure city. The objective is to
minimize the total length 𝐿(𝝅 ∣ 𝑆) of the tour:

𝐿(𝝅 ∣ 𝑆) = ‖

‖

‖

𝑥𝜋𝑁 − 𝑥𝜋1
‖

‖

‖2
+

𝑁−1
∑

𝑖=1

‖

‖

‖

𝑥𝜋𝑖 − 𝑥𝜋𝑖+1
‖

‖

‖2
, (1)

where 𝑥𝜋𝑖 denotes the 2-D coordinates of the 𝑖th visited city and ‖ ⋅ ‖2
symbolizes the 𝓁2 norm.

In contrast to the autoregressive methods that consider TSPs as a
sequential decision-making process, we formulate it as a binary-class
link prediction task on graphs. The overall framework of the proposed
methodology is illustrated in Fig. 1.

In earlier work [22,33], TSP instances are represented as complete
graphs where there are connections between each pair of nodes (cities)
no matter what the Euclidean distance is. In a complete graph repre-
sentation ( , ),  denotes the set of 𝑁 cities as nodes with || = 𝑁 ,

and  consists of all undirected edges connecting any two nodes in the
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Fig. 1. Solving TSPs as a link prediction task on graphs. In the heuristic sparsification stage, the input coordinates of 𝑁 cities are first converted into a complete graph where
all nodes are directly connected, followed by heuristics such as 𝑘-nearest neighbors to get a sparse graph without redundant edges. In the link prediction stage, the sparse graph
with node and edge features is input to the encoder to get latent graph embeddings via multiple layers of message passing through edges (in yellow arrows). Then the decoder
performs link prediction on each edge by aggregating the embeddings of the source and target node into the edge embedding via an edge-centered message passing scheme (in
green arrows). Finally, the output heatmaps are converted into feasible solutions through post-hoc graph search approaches.
set  . The number of connections || increases exponentially with the
number of cities, resulting in a high density of edges. Consequently,
the pairwise computation for all nodes will be intractable as the graph
becomes larger. Furthermore, according to the definition of the TSP, the
connections in an optimal solution are more likely to exist between two
nodes that are close to each other, as they usually result in a smaller
objective value.

To improve the scalability of the model while preserving valu-
able information on the graph topology, we adopt 𝑘-nearest neighbors
heuristics and convert the TSP instance from a complete graph to a
sparse graph representation ̂( , ̂) with each node only connected to
its 𝑘 nearest neighbors:

̂ = {(𝑢, 𝑣) ∣ 𝑢, 𝑣 ∈  , 𝑣 ∈ 𝑈𝑘}, (2)

where 𝑈𝑘 is the set of all 𝑘-nearest neighbors of node 𝑢 according to the
Euclidean distances. The heuristic graph specification enables learning
faster and scaling up to large instances by reducing the search space.
In ̂( , ̂), the node features are defined as the normalized 2-D coordi-
nates, and the edge features are the corresponding Euclidean distance
between the source and target nodes. We transform the optimization
of a TSP instance into a binary-class link prediction task and define the
ground-truth label 𝑌 (𝐞) of each edge 𝐞 as whether it exists or not in the
optimal tour 𝝅∗.

𝑌 (𝐞 ∣ 𝐞 ∈ ̂) =

{

1, edge 𝐞 exists in 𝝅∗;
0, otherwise.

(3)

In data-driven NCO, a neural network will be trained with labeled
data (instances) in an end-to-end manner. After training, the model can
output link predictions 𝑌 (𝐞) on all edges of the input graph.

𝑌 (𝐞 ∣ 𝐞 ∈ ̂) ∈ [0, 1] (4)

Finally, the output predictions are transformed into feasible solu-
tions by graph search approaches. In this work, we employ the basic
random search and 2-opt as our post-hoc search strategy [61]. Given
the link predictions in the form of a heatmap, we construct a TSP tour
sequentially by adding one node at each step. Starting from a randomly
selected node, at each step we calculate the normalized prediction
values of all unvisited nodes as the probability of being selected in
the next step. Then the next node is selected via roulette and added to
the partial tour. The selection continues recursively until all nodes are
visited, followed by a 2-opt local search to further improve the quality
of the solution. The 2-opt evaluates all possible edge swaps at each
iteration, and selects the swap that can lead to the greatest reduction in
the total length of the tour until no further improvements can be made.
The post-hoc search algorithm with random sampling and 2-opt local
search is shown in Algorithm 1.
4

Algorithm 1 Post-hoc Graph Search with 2-opt Heuristics
1: Input: Link predictions as a heatmap
2: Output: TSP tour
3: Initialize an empty tour 𝑡𝑜𝑢𝑟
4: Randomly select a start node 𝑛0 from 𝑁 nodes
5: Add 𝑛0 to 𝑡𝑜𝑢𝑟
6: Mark 𝑛0 as visited
7: for 𝑖 ← 1 to 𝑁 − 1 do
8: Normalize prediction values for all unvisited nodes
9: Identify the next node 𝑛𝑖 using roulette selection

10: Add 𝑛𝑖 to 𝑡𝑜𝑢𝑟
11: Mark 𝑛𝑖 as visited
12: end for
13: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑇 𝑟𝑢𝑒
14: while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is 𝑇 𝑟𝑢𝑒 do
15: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒
16: for 𝑖 ← 1 to 𝑁 − 2 do
17: for 𝑗 ← 𝑖 + 1 to 𝑁 − 1 do
18: 𝑛𝑒𝑤𝑇 𝑜𝑢𝑟 ← reverse the order of nodes between 𝑛𝑖 and 𝑛𝑗

in 𝑡𝑜𝑢𝑟
19: if length(𝑛𝑒𝑤𝑇 𝑜𝑢𝑟) < length(𝑡𝑜𝑢𝑟) then
20: 𝑡𝑜𝑢𝑟 ← 𝑛𝑒𝑤𝑇 𝑜𝑢𝑟
21: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑇 𝑟𝑢𝑒
22: end if
23: end for
24: end for
25: end while
26: return 𝑡𝑜𝑢𝑟

3.2. The edge-aware residual graph autoencoder

3.2.1. A residual gated encoder
The encoder module focuses on learning enhanced latent space

graph embeddings via an efficient message-passing process. The mes-
sage passing is a fundamental operator on graph-structured data in the
encoding scheme, which enables effective information exchange and
aggregation among nodes based on the topology of the graph. To cap-
ture complex graph patterns via information propagation, the message
passing involves a recursive process of broadcasting and updating mes-
sages between related nodes in the graph. And the recursive message
passing which can map an input graph to its hidden space representa-
tion is usually achieved by multiple layers of graph convolution-based
operations. Specifically, at each layer, a node aggregates information
from its neighbor nodes which have direct connections (edges) with
itself, and then calculates and updates its representation according to
the integrated information. Such an aggregation and update process
occurs at all nodes simultaneously at each step, and this process is
repeated for multiple iterations on the graph before generating the
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Fig. 2. The residual gated encoder. (1) The input to an encoder model is a directed sparse graph, where the input node features and edge features are represented as 𝛼 and 𝛽,
respectively. In the sparse graph representation of the TSP, each node is connected to its 𝑘 nearest neighbors. (2) The node and edge features are mapped to high-dimensional
embeddings through linear projections to enhance the expression power. (3) Multiple message-passing layers enable nodes and edges to learn information from local neighborhoods
via residual gated graph convolutions. (4) The encoder outputs the graph with latent space embeddings which can capture inherent knowledge of the graph topology for downstream
tasks.
final representation. The motivation of a recursive message-passing
process is to enable every node to refine its embeddings for captur-
ing progressively implicit patterns. Within one layer of the message
passing, a node learns information from its 1-hop neighbors. After 𝑘
layers of propagation, each node gets a reception field of its 𝑘-hop
neighbor nodes. Therefore, the recursive message passing encourages
the node embeddings to capture high-level dependencies by aggregat-
ing messages from distant nodes, and promotes the encoder to learn
hierarchical representations for downstream tasks. Consequently, the
depth of the encoder, measured by the number of layers, is crucial for
effective feature extraction and message propagation.

As illustrated in Fig. 2, there are mainly three steps in the message
passing process of the encoder: 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛, and 𝑢𝑝𝑑𝑎𝑡𝑒.
In the message transformation step, all neighboring nodes encode their
features as messages, which may contain node-specific information
or relationships. Then the embeddings are mapped to latent space
representations via a linear or non-linear transformation. The mapped
embeddings can have either the same or different dimensions as before.
In the message aggregation step, each node aggregates the transformed
information from its 1-hop neighbors according to the graph topology.
Some common choices for aggregation functions include 𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛,
and 𝑚𝑎𝑥. More complex alternatives include weighted aggregation or
attention mechanisms. The aggregation function should be permutation
invariant to ensure that the aggregation result remains the same regard-
less of the processing order of nodes. Once the messages are aggregated,
in the message update step, each node calculates a refined version of
its representation via an update function that takes both the original
embedding and the aggregated information as the inputs. Finally, the
updated representations are taken as the inputs to the next layer of the
encoder. The message-passing process can be generally formulated as:

𝐡𝑖 ← 𝛾
⎛

⎜

⎜

⎝

𝐡𝑖,
⨂

𝑗∈𝑖

𝜙
(

𝐡𝑖,𝐡𝑗 , 𝐞𝑗,𝑖
)

⎞

⎟

⎟

⎠

, (5)

where 𝐡𝑖 denotes the embedding of the 𝑖th node in the graph and 𝐞𝑗,𝑖
denotes the embedding of a directed edge from node 𝑗 to node 𝑖. 𝜙 is the
message transformation function that takes the original node or edge
embeddings as the inputs, and ⨂ represents a permutation invariant
function such as 𝑠𝑢𝑚. 𝑖 consists of all 1-hop neighbors of node 𝑖, and
𝛾 is the update function which calculates the updated embedding 𝐡𝑖
according to the original embedding and the aggregated message from
its first-order neighboring nodes.

As formulated in Eq. (5), the message exchange occurs at the local
neighbors of each node in the graph, enabling them to receive inherent
information about the structure and node features across the entire
graph. The expressive capability of latent embeddings plays an impor-
tant role in the following link prediction task, which requires a good
understanding of the relationships and interconnections in the graph.
5

However, the original graph autoencoder framework [62] only takes a
simple graph convolutional network (GCN) as its encoder model. The
layer-wise propagation rule is as follows:

𝐻 (𝑙+1) = 𝜎
(

𝐷̃− 1
2 𝐴̃𝐷̃− 1

2 𝐻 (𝑙)𝑊 (𝑙)
)

(6)

𝐷̃𝑖𝑖 =
∑

𝑗
𝐴̃𝑖𝑗 , (7)

where 𝐻 (𝑙) denotes the node embeddings of the 𝑙th GCN layer. 𝐴̃
and 𝐷̃ are the adjacency matrix with self-connections and the de-
gree matrix, respectively. 𝜎 represents the activation function and
𝑊 (𝑙) is the learnable weight matrix of the 𝑙th layer. In the GCN-
based encoder model, only node embeddings are propagated and up-
dated within message-passing layers, without accounting for any edge
features. In addition, the same message transformation matrix 𝑊 (𝑙)

is shared among all nodes, limiting the learning capability of the
encoder model to identify fine-grained relationships between nodes.
Furthermore, the iterative propagation in the standard GCN could
result in over-smoothing, significantly reducing the diversity among
different nodes after several message-passing layers. To overcome these
limitations, we design an edge-aware encoder model with residual
connections and a dense-attention mechanism built on ideas from graph
ConvNets [35].

For a TSP instance with 𝑁 cities, its graph representation ( , ) is
taken as the input of the encoder. We first map the original node and
edge features to high-dimensional embeddings via linear transforma-
tions:

𝐡𝑖 = 𝐖ℎ ⋅ 𝜶𝑖 + 𝐛ℎ, 𝜶𝑖 ∈  (8)

𝐞𝑖,𝑗 = 𝐖𝑒 ⋅ 𝜷𝑖𝑗 + 𝐛𝑒, 𝜷 𝑖𝑗 ∈  , (9)

where 𝜶𝑖 ∈ R2 is the input node feature of the 𝑖th city denoting
the 2-dimensional coordinates, and 𝜷𝑖𝑗 ∈ R represents the Euclidean
distance of the edge between cities 𝑖 and 𝑗. 𝐖ℎ ∈ R𝐻×2, 𝐖𝑒 ∈ R𝐻×1,
𝐛ℎ ∈ R𝐻 and 𝐛𝑒 ∈ R𝐻 are the trainable weight parameters of the
linear transformations. 𝐡𝑖 and 𝐞𝑖𝑗 are 𝐻-dimensional node and edge
embeddings, respectively. Since the performance of link prediction for
the TSP relies heavily on the total length of selected edges, we construct
explicit edge embeddings via an edge convolutional operation in each
layer of the encoder:

𝐞(𝑘+1)𝑖𝑗 = 𝐂𝑘𝐞(𝑘)𝑖𝑗 + 𝐃𝑘𝐡(𝑘)𝑖 + 𝐄𝑘𝐡(𝑘)𝑗 , (10)

where 𝐂𝑘,𝐃𝑘,𝐄𝑘 ∈ R𝐻×𝐻 are learnable parameters of the 𝑘th edge
convolution layer, and the index 𝑘 indicates that the weight parameters
are not shared among different layers. The enhanced edge embeddings
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are further adopted to generate a set of dense attention-based weight
vectors for node convolution.

𝝎𝑘
𝑖𝑗 =

𝜎
(

𝐞(𝑘)𝑖𝑗

)

∑

𝑗∈𝑖
𝜎
(

𝐞(𝑘)𝑖𝑗

)

+ 𝛿
, (11)

here 𝜎(⋅) denotes the sigmoid function and 𝛿 ∈ R+ is a small constant.
he node convolutional operator in the 𝑘th encoder layer is written by:

(𝑘+1)
𝑖 = 𝐀𝑘𝐡(𝑘)𝑖 +

∑

𝑗∈𝑖

𝝎𝑘
𝑖𝑗 ⊙ 𝐁𝑘𝐡(𝑘)𝑗 , (12)

here 𝐀𝑘,𝐁𝑘 ∈ R𝐻×𝐻 are trainable parameters of the node con-
olution, and 𝝎𝑘

𝑖𝑗 is the gated dense-attention map vector derived
rom the edge embedding 𝐞𝑖𝑗 . A batch normalization (BN) operator
s incorporated into the message-passing process for both node and
dge embeddings before the activation function ReLU. Finally, we
dd a residual connection within each encoder layer to alleviate the
ver-smoothing issue after multiple iterations of message passing. The
verall message-passing process within each layer of our edge-aware
ncoder model is formulated as:
(𝑘+1)
𝑖 = ReLU(BN(𝐀𝑘𝐡(𝑘)𝑖 +

∑

𝑗∈𝑖

𝝎𝑘
𝑖𝑗 ⊙ 𝐁𝑘𝐡(𝑘)𝑗 )) + 𝐡(𝑘)𝑖 . (13)

(𝑘+1)
𝑖𝑗 = ReLU(BN(𝐂𝑘𝐞(𝑘)𝑖𝑗 + 𝐃𝑘𝐡(𝑘)𝑖 + 𝐄𝑘𝐡(𝑘)𝑗 )) + 𝐞(𝑘)𝑖𝑗 . (14)

In contrast to the original GCN-based encoder, the edge-aware
encoder model can generate explicit edge representations via multiple
layers of an efficient message-passing process. This enables the model
to learn distinctive edge embeddings directly from input features (dis-
tances). Since the objective function of the TSP is determined by the
sum of distances in a tour, such an edge-aware encoding scheme is
more effective for link predictions than the simple concatenation of
source and target node representations. The graph encoding scheme for
enhanced edge representations is illustrated in Algorithm 2.

Algorithm 2 Graph Encoding Scheme
1: Input: Graph ( , ) with node features 𝜶𝑖 ∈  and edge fea-

tures 𝜷 𝑖𝑗 ∈  , number of message passing layers 𝐾, latent space
dimension 𝐻

2: Output: latent node encodings 𝐇 ∈ R||×𝐻 and latent edge
encodings 𝐄 ∈ R||×𝐻

3: Map node features to latent space: 𝐇 ← 𝜶 in Equation.(8)
4: Map edge features to latent space: 𝐄 ← 𝜷 in Equation.(9)
5: for 𝑘 = 1 to 𝐾 do
6: for 𝑖 = 1 to || in parallel do
7: Edge convolution on

{

𝑒𝑘𝑖𝑗 ∣ 𝑗 ∈ 𝑖

}

in Equation.(10)
8: Calculate gated weight vectors 𝝎𝑘

𝑖𝑗 in Equation.(11)
9: Calculate node convolution on 𝐡𝑘𝑖 in Equation.(12)

10: Batch normalization on both edges and nodes:
11: 𝐡(𝑘+1)𝑖 ← BN(𝐡(𝑘+1)𝑖 )
12: 𝐞(𝑘+1)𝑖 ← BN(𝐞(𝑘+1)𝑖 )
13: Add residual connections after activation function:
14: 𝐡(𝑘+1)𝑖 ← ReLU(𝐡(𝑘+1)𝑖 ) + 𝐡(𝑘)𝑖
15: 𝐞(𝑘+1)𝑖 ← ReLU(𝐞(𝑘+1)𝑖 ) + 𝐞(𝑘)𝑖
16: end for
17: end for
18: return 𝐇 ∈ R||×𝐻 and 𝐄 ∈ R||×𝐻

3.2.2. An edge-centered decoder
After encoding the node and edge representation in a latent space

via the encoder model, the decoder aims to identify whether each
edge exists in the optimal solution by making link predictions on the
6

graph based on the encoding information. Generally speaking, a graph
autoencoder model performs link prediction by leveraging the learned
node embeddings to estimate the likelihood of a connection between
two nodes of the input graph. In the traditional link prediction tasks
such as Cora [62], Citeseer [24] and PubMed [63], there is only one
graph in the dataset with thousands of nodes. The encoder–decoder
model is trained on an incomplete version of the original graph as
training data, where part of the edges are removed from the graph with
all node features remaining. The encoder learns to map the input node
features into latent embeddings, and the decoder reconstructs the graph
based on the learned embeddings. The training target is to minimize
the reconstruction error of the input subgraph. Once trained, the node
embeddings are extracted from the encoder model for link prediction,
which is supposed to have captured the node attributes and relation-
ships of the entire graph. With the extracted embeddings, the decoder
model estimates the likelihood of edge existence by calculating the
similarity between two nodes. The original graph autoencoder model
employs a simple inner product decoder to measure the similarity
between a pair of nodes [62]:

𝑝
(

𝑖𝑗 = 1 ∣ 𝐡𝑖,𝐡𝑗
)

= 𝜎(𝐡⊤𝑖 𝐡𝑗 ), (15)

where 𝑝
(

𝑖𝑗
)

∈ [0, 1] denotes the probability of an edge 𝑖𝑗 existing
between node 𝑖 and node 𝑗. 𝐡𝑖,𝐡𝑗 ∈ R𝐻 represent the learned node
embeddings from the encoder model, and 𝜎(⋅) is the sigmoid function.
The value of the inner product between two node vectors implies their
similarity in the latent space. According to Eq. (15), the likelihood
of the existence of an edge is determined by the degree of similarity
between two node embeddings. A greater similarity between two nodes
leads to a higher probability of a connection, and vice versa. This kind
of similarity-based link prediction principle is based on the assumption
that those nodes connected in a graph should have similar features
and local neighborhood structures. This assumption applies to node-
centered link prediction tasks like Cora, where similar documents do
have a greater probability of cross-citation. However, it is not di-
rectly applicable to the optimal-tour prediction on graph-based routing
problems like TSPs.

Based on the problem definition in Section 3.1, every node on a
sparse TSP graph has the same degree determined by a heuristic value
𝑘, and the node features involve its two-dimensional coordinates in
the Euclidean space. Therefore, all nodes on the graph have a similar
local neighborhood structure independent of the node characteristics.
Furthermore, there is no guarantee that an edge between two nodes
with similar features (i.e., a similar horizontal or vertical coordinate)
must exist in the optimal tour. The objective value of a TSP solution is
determined by the distances of all edges in the tour, without direct rela-
tions to the coordinates of cities. In summary, the original GAE with an
inner product decoder performs well on node-centered link prediction
tasks, since it encourages similar nodes to have similar embeddings,
which is suitable for the graph characteristics in transductive datasets.
On the other hand, it overemphasizes the node similarity and proximity
at the expense of edge information, leading to a poor generalization
ability to link prediction on TSP, which requires the incorporation of
both edge and node messages.

For the above reasons, we redesign the decoder structure and pro-
pose an edge-aware decoder integrating both node and edge informa-
tion for efficient link predictions on TSPs. The decoder structure is
shown in Fig. 3. The general idea is to decode an edge representation
by incorporating its source and target node embeddings via an edge-
centered message-passing process. In contrast to the encoding process
where messages are passed from one node to another along the edges,
in edge-centered decoding, messages on source and target nodes are
aggregated into the edge embedding to update itself. To this end, the
following three main steps are implemented in the decoding scheme:

(a) Message transformation. To enhance the expressive power of
learned graph representations, a shared linear transformation is
performed on all source nodes, target nodes, and edges sepa-
rately.
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Fig. 3. The edge-centered decoder. (1) We formulate the input graph of the decoder into an edge-centered representation for a clear illustration, where each edge embedding is
associated with its source and target node embeddings. (2) Three different linear projections are applied to all source nodes, target nodes, and edge embeddings, respectively. (3)
Embeddings from the source and target nodes of each edge are summed up, and then aggregated into the edge embedding in an edge-centered message-passing manner. (4) The
inner product result of the sigmoid-transformed node embedding and the edge embedding is passed through a multi-layer perceptron (MLP) classifier to output the probability of
the edge existing in the optimal tour.
(b) Node aggregation. For each edge in the graph, the transformed
information on its source and target nodes are aggregated.

(c) Edge update. The aggregated node information is first normal-
ized by the sigmoid function. Then, an inner product is per-
formed on the node and edge embeddings.

Following the message passing scheme in the proposed edge-aware
decoder, the decoding output 𝐝𝑖𝑗 for an input edge embedding 𝐞𝑖𝑗 is
calculated by:

𝐝𝑖𝑗 = 𝜎
(

𝐅𝐡𝑖 +𝐆𝐡𝑗
)

⊙ 𝐉𝐞𝑖𝑗 (16)

where 𝐅,𝐆, 𝐉 ∈ R𝐻×𝐻 denote learnable parameters of the linear
transformation for target nodes, source nodes, and edges, respectively,
and 𝜎 (⋅) is the sigmoid function. Finally, the 𝐻-dimensional decoding
is converted into a probability prediction via a simple MLP model.
The edge-centered decoding scheme for predicting the TSP edges is
described in Algorithm 3.

𝑝
(

𝑖𝑗 = 1
)

= MLP
(

𝐝𝑖𝑗
)

(17)

Algorithm 3 Edge-centered Decoding Scheme

1: Input: Graph ( , ), node embeddings 𝐇 ∈ R||×𝐻 , edge
embeddings 𝐄 ∈ R||×𝐻

2: Output: link prediction results
3: for 𝑖 = 1 to || in parallel do
4: for 𝑗 ∈ 𝑖 in parallel do
5: Transform messages on nodes and edges:
6: 𝐡̂𝑖 ← 𝐅𝐡𝑖, 𝐡̂𝑗 ← 𝐆𝐡𝑗 , 𝐞̂𝑖𝑗 ← 𝐉𝐞𝑖𝑗
7: Aggregation from source and target nodes:
8: 𝐡̂𝑎𝑔𝑔 = 𝐡̂𝑖 + 𝐡̂𝑗
9: Update the edge embedding:

10: 𝐝𝑖𝑗 = 𝜎(𝐡̂𝑎𝑔𝑔)⊙ 𝐉𝐞𝑖𝑗
11: Calculate the existence probability:
12: 𝑝

(

𝑖𝑗 = 1
)

= MLP
(

𝐝𝑖𝑗
)

13: end for
14: end for
15: return

{

𝑝
(

𝑖𝑗 = 1
)

∣ 𝑖𝑗 ∈ 
}

3.3. Training strategy

In data-driven NCO approaches, it is always challenging to handle
data with various scales and imbalanced distributions. A typical sce-
nario is combinatorial optimization in real-world applications, where
the number of historical cases of small scales is much larger than
the cases of large scales. Learning algorithms often face difficulties in
generalizing inductive rules due to this kind of imbalance. Therefore,
dealing with such problems requires the data-driven model to have the
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ability to learn from scale-imbalanced data and generalize to instances
of arbitrary scales. In general, a model trained on small-scale instances
tends to have a significant degradation in performance on large-scale
problems, since the implicit knowledge learned from small-scale data
cannot be directly transformed to large-scale problems. It has been
demonstrated that learning from data with variable sizes is beneficial
for the model’s generalization ability [27]. However, training a gener-
alizable NCO model with limited large-scale instances while effectively
leveraging knowledge from small-scale data remains an open question.

In this work, we introduce a simple yet effective training strat-
egy called random active sampling [64] into our training process, in
order to learn from scale-imbalance TSP instances efficiently for link
prediction tasks. The active sampling methods are originally designed
to address imbalanced classification problems, where a majority class
𝐷𝑚𝑎𝑗 has significantly more data than other minority classes 𝐷𝑚𝑖𝑛.
Since an equalized dataset generally improves the overall classification
accuracy than an imbalanced dataset, an intuitive motivation of active
sampling methods is to modify the dataset with customized sampling
mechanisms to get a balanced distribution. Random oversampling and
undersampling are two main strategies. The mechanism of random
oversampling can be naturally implemented by adding a set of data from
the minority class into the original dataset. Specifically, we randomly
select 𝑆 samples from the minority class 𝐷𝑚𝑖𝑛 to duplicate and merge
them with the original set. By doing so, the total number of minority
class examples is augmented by 𝑆, leading to an adjustment in the
class distribution balance. On the contrary, the random undersampling
method contributes to the class balance by reducing the number of
samples in the majority class. In particular, we randomly select 𝑆 sam-
ples from the majority class 𝐷𝑚𝑎𝑗 and remove them from the dataset.
As a result, the overall samples are adjusted manually for a balanced
distribution via both undersampling and oversampling strategies.

In the link prediction task with scale-imbalanced TSP cases as the
training data, we treat TSP instances with different numbers of cities
as different classes. Hence for a TSP dataset with various sizes from
50 to 500 cities, there are 451 classes in total. Instead of removing
or duplicating existing samples in the original dataset, we modify the
traditional AS strategies by incorporating oversampling and undersam-
pling into a uniform-sampling on classes, with the aim to improve the
sampling fairness and the data utilization. Specifically, we follow a
two-step sampling manner for generating each batch of data during the
training process. In the first step, we select 𝐵 classes uniformly from all
classes of the number of cities, and 𝐵 is the batch size. In the second
step, for each of the 𝐵 choices of the city number, we randomly sample
an instance from the corresponding class, forming a batch of training
data with a uniform distribution in the number of cities. In the original
training process, all data from the training set are shuffled and divided
into batches of data randomly. As a result, every batch of training data
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Fig. 4. Training data distributions with different sampling strategies. The random
sampling retains the original distribution of the training dataset, where small-scale
data is the majority and large-scale data is the minority. The active sampling strategy
can change the original distribution to a balanced distribution of the number of nodes.

will follow a similar distribution to the overall dataset. On the contrary,
if each batch of data is generated via a class-uniform sampling strategy,
then the overall training data will follow a balanced distribution of
the number of nodes, regardless of the original distribution of data.
The distribution of different training datasets obtained with different
sampling strategies are shown in Fig. 4.

3.4. Dataset generation

To simulate the scale-imbalanced distribution in realistic optimiza-
tion tasks, we create a TSP benchmark dataset with 50,000 instances
as the training data. The dataset consists of graphs of different sizes
from 50 to 500 nodes, and the number of graphs per size varies in
inverse proportion to the number of nodes. As a result, there are 439
graphs with 50 nodes, and only 43 graphs have 500 nodes. Following
the learning-based work in [22,27,34], the 2-dimensional locations
{𝑥, 𝑦} of each node are uniformly sampled in the unit square [0, 1]2

for each instance. The optimal solution to each instance is provided
by Concorde in the form of the ground truth label of each edge
existing in the optimal tour. To test the generalization ability of models
at various scales, we further create five separate test datasets for
graphs of size {50, 100, 300, 500, 700} nodes, each including 1000 TSP
instance-solution pairs. Fig. 5 illustrates the optimal tours obtained by
Concorde.

4. Experimental results

In this section, we conduct systematic experiments on different
amounts of training data, different scales of test cases, and different
numbers of samples to compare the performance of our proposed
approach with state-of-the-art learning-based NCO methods as well as
the Concorde solver, in order to verify the effectiveness of the proposed
method.

4.1. Experimental settings

As described in Section 3.1, this work considers the 2-dimensional
symmetric TSPs with 𝑁 cities randomly located in a unit square [0, 1]2

for simplification. The objective is to find an optimal route for a
salesman to visit all cities once and return to the starting point, in order
to minimize the total length of the tour. We formulate a TSP instance
as a sparse graph representation based on heuristic information, where
8

each node is a city and the edge weight represents the Euclidean
distance between two cities. In the sparse graph representation, each
node is only connected to its 𝐾 nearest neighbors according to the
distances, where 𝐾 is a hyperparameter. The aim is to identify the
shortest possible Hamiltonian cycle of the graph via link prediction and
graph search methods. In our experimental setup, we configure four
different levels of training data quantities with 1000, 5000, 10000, and
50000 instances. For each level of the training quantity, all instances
are randomly sampled from the TSP benchmark dataset in Section 3.4,
forming a scale-imbalanced distribution where the number of instances
is inversely proportional to the number of nodes. The test dataset
comprises a total of 5000 TSP cases, including five distinct scales of
instances: TSP50, TSP100, TSP300, TSP500, and TSP700, with each
scale containing 1000 instances. It is worth noting that all test cases are
completely independent of the training dataset. The optimal solutions
to all test cases are generated by the Concorde solver. During the test
process, the trained model outputs the link-predicted results for each
input case in the form of a heatmap, indicating the probability of
each edge existing in the optimal tour. Subsequently, the probability
predictions are converted into feasible solutions via post-hoc graph
search approaches. We explore two different post-hoc search strategies,
namely beam search and random search, to generate feasible TSP so-
lutions. Beam search is a fixed-width breadth-first searching approach
that is widely adopted in generating high-probability sequences [16].
Starting from the first node, the heatmap is explored recursively to
construct 𝑏 solutions in parallel. Specifically, at each iteration, the top-
𝑏 edges with the highest probability in the heatmap will be selected
and added to the 𝑏 partial tours. For each partial tour, the selected
nodes will be masked to ensure the feasibility of the solution. The
recursive selection process will continue to expand the 𝑏 tours until
all nodes have been selected for each solution. The final prediction
of beam search is determined by the tour with the minimum total
length among the 𝑏 complete tours. Random search constructs a feasible
solution to a TSP instance sequentially by adding one node at each
step in an iterative manner. In contrast to the beam search where
fixed 𝑏 nodes with the highest probabilities are selected at each step,
random search determines the next node from all unvisited nodes via
the roulette wheel selection, enabling the possibility of each node being
selected with different probabilities. We adopt two search strategies
in our experiments, and the results indicate that the random search
achieves a better performance in terms of the solution quality. There-
fore, we leverage the random search as our post-hoc graph search
strategy in our experiments for all comparison methods, followed by
a 2-opt local search to further enhance the model performance. We
explore the effects of three different sampling quantities on solution
performance by sampling 200, 500, and 1000 solutions for each test
case. To investigate the effectiveness of the active sampling method
introduced in Section 3.3, we train all learning-based models in our
comparative experiments using two training strategies separately, with
and without the random active sampling method.

4.2. Baseline methods

We compare the proposed methodology with both an exact solver
and state-of-the-art NCO methods as baselines. All learning-based mod-
els are trained in a supervised learning manner for a fair comparison.

1. Concorde [65]: Concorde is an exact solver specially designed for
solving TSP. It builds on ideas from branch-and-cut algorithms,
and incorporates linear programming and cutting plane methods
to find optimal solutions to NP-hard combinatorial optimization
problems including TSPs. Concorde has demonstrated excep-
tional performance in finding optimal solutions to TSP instances
up to thousands of cities.
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Fig. 5. TSP instances of different scales in the training dataset. Blue edges indicate the optimal tour obtained by the Concorde solver.
2. Multi-layer Perceptron (MLP) [66]: The MLP model takes the node
features as inputs, with no consideration of the graph topology
information. It first maps the node inputs to a high-dimensional
latent space via multiple layers of linear projections, and gener-
ates edge embeddings by concatenating the two node embed-
dings of each edge. Finally, the edge embeddings are passed
through a readout module to output probability predictions in
the form of a heatmap.

3. Graph Convolutional Network (GCN) [23]: The vanilla GCN model
takes the graph-structured data as input, which incorporates
both the node and edge features and the topology informa-
tion. The message passing occurs between neighbor nodes via
multiple layers of graph convolutional operators, where each
node aggregates information about its neighbors with the same
weights.

4. Graph Attention Network (GAT) [24]: The GAT model introduces
masked self-attention layers and enables nodes to attend over
the features of its neighbors by implicitly allocating different
weights to neighbors during the message aggregation. For each
graph attention layer in the GAT model, the input node features
are first projected to higher-level expressions via a shared linear
transformation, and then attention coefficients between each
pair of nodes are calculated by a shared attention mechanism.
The coefficients are normalized using the softmax function to
serve as the weights of a linear combination of all neighbor em-
beddings for each node. The edge embeddings are represented
as the concatenation of node embeddings.

5. Residual Gated Graph ConvNets (GatedGCN) [35]: The GatedGCN
model leverages an edge gating mechanism [67] to allocate
different weight vectors to neighbor node embeddings for the ag-
gregation operator. It also incorporates the residual connections
and batch normalization in the graph convolutional operation.
Compared to the vanilla GCN model, the GatedGCN introduces
explicit edge feature representation and update except for the
message passing of node embeddings. The edge gates serve as a
soft attention map with respect to the original sparse attention
mechanism [18,24].

4.3. Implementation details

All learning-based models are trained with the same hyperparam-
eter settings. For the model configuration, each model consists of
𝐿 = 4 message-passing layers with graph convolution-based operators,
followed by an MLP block with 3 fully-connected layers to output link
prediction values for all edges in the graph. The input node and edge
features are 2 and 1 dimension, respectively, and the latent spaces
of both node and edge embeddings have the same hidden dimension
𝐻 = 64 for each layer. We set 𝑘 = 25 in the 𝑘-nearest neighbor
heuristic for all TSP instances of the training data. For the training
process, we minimize the binary cross-entropy loss using the Adam
optimizer, where the initial learning rate is 𝑙𝑟 = 0.001 without decay
for all models. The batch size is set to 𝐵 = 32 for all experiments, and
9

the maximum number of training epochs is 500. During the test process,
we evaluate the trained model on five test datasets of different problem
scales: TSP50, TSP100, TSP300, TSP500, and TSP700 with a batch size
of 100. The learning-based methods are run on a single NVIDIA A40
GPU with 48 GB memory.

4.4. Performance indicators

Following the previous work in [22,27,34], we evaluate the model
performance on solving TSP cases via three indicators: F1 score, ROC
AUC score, and the optimal gap.

4.4.1. F1 score
It is commonly adopted as the performance indicator for binary clas-

sification tasks. It is particularly preferable over accuracy when dealing
with uneven datasets such as the TSP, where one class significantly
dominates the other. For example, in a complete graph with 𝑁2 edges,
only the 2𝑁 edges in the optimal tour have positive labels. In such
cases, the accuracy alone may not represent the model performance
precisely. For a binary classification task, the numbers of true positive
(TP), false positive (FP), and false negative (FN) samples are used to
calculate the following F1 score:

F1 = TP
TP + 1

2 (FP + FN)
. (18)

4.4.2. ROC AUC score
It is defined as the area under the receiver operating characteristic

curve from prediction scores. The ROC AUC score represents the effec-
tiveness of a model in distinguishing between the positive and negative
classes. A higher ROC AUC score implies a better performance at the
binary classification task. It is suitable for class-imbalanced datasets,
as it is not affected by changes in the classification threshold. For a
binary classification task, TPR and FPR are the true positive rate and
false positive rate for different threshold values. The ROC AUC score is
calculated as:

ROC AUC = ∫

1

𝑡=0
TPR(FPR−1(𝑡)) 𝑑𝑡. (19)

4.4.3. Optimal gap
It measures how close an obtained solution to the optimal one is.

In our experiments, we define the optimal gap with respect to the
Concorde solver, which calculates the normalized difference between
the predicted tour length 𝑆 and the optimal solution 𝑆𝑏𝑒𝑠𝑡 provided by
Concorde:

GAP =
𝑆 − 𝑆𝑏𝑒𝑠𝑡
𝑆𝑏𝑒𝑠𝑡

× 100%. (20)
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Fig. 6. The optimal gap of different sample sizes on test cases.
Table 1
The average optimal gap (%) on 1,000 test cases w.r.t Concorde of learning-based models on TSP test datasets of different scales.

Test Dataset TSP50 TSP100 TSP300 TSP500 TSP700

Sample size 200 500 1000 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Tr
ai

n
w

ith
1k

Da
ta

MLP 1.854 1.180 0.731 4.718 4.047 3.517 8.226 7.711 7.362 9.473 8.979 8.635 10.003 9.575 9.310
GCN 1.798 1.083 0.731 4.761 3.935 3.484 8.297 7.666 7.293 9.215 8.737 8.400 9.830 9.382 9.084
GAT 1.955 1.234 0.796 4.584 3.867 3.494 8.188 7.479 7.168 9.158 8.641 8.278 9.625 9.289 8.99
GatedGCN 1.627 1.079 0.774 4.473 3.737 3.227 7.973 7.523 7.124 9.161 8.717 8.290 9.703 9.244 9.042
GatedGCN* 1.397 0.872 0.542 4.053 3.484 3.006 7.498 7.079 6.686 8.692 8.153 7.769 9.214 8.818 8.564

MLP+AS 1.743 1.113 0.819 4.613 3.857 3.309 7.966 7.497 7.182 9.260 8.809 8.461 10.002 9.456 9.117
GCN+AS 1.859 1.233 0.888 4.680 3.933 3.447 8.338 7.711 7.342 9.227 8.708 8.436 9.867 9.307 9.077
GAT+AS 1.826 1.168 0.811 4.685 3.945 3.458 7.910 7.443 7.093 9.081 8.522 8.298 9.664 9.283 8.965
GatedGCN+AS 1.764 0.960 0.686 4.420 3.526 3.065 8.049 7.457 7.103 9.089 8.696 8.420 9.764 9.398 9.116
GatedGCNa+AS 1.261 0.723 0.434 3.835 3.084 2.620 7.136 6.662 6.324 8.181 7.793 7.533 8.720 8.376 8.079

EdgeGAE (ours) 1.148 0.642 0.435 3.893 3.111 2.660 7.149 6.487 6.100 8.010 7.646 7.375 8.629 8.289 8.032
EdgeGAE+AS (ours) 1.120 0.735 0.424 3.652 3.091 2.680 7.182 6.612 6.250 8.176 7.669 7.451 8.796 8.347 8.029

Tr
ai

n
w

ith
5k

Da
ta

MLP 1.768 1.134 0.834 4.603 3.719 3.251 8.181 7.669 7.184 9.402 8.887 8.528 9.916 9.499 9.254
GCN 1.904 1.229 0.859 4.687 3.909 3.487 8.066 7.577 7.262 9.101 8.728 8.295 9.531 9.156 8.827
GAT 1.823 1.069 0.773 4.677 4.061 3.420 7.990 7.486 7.142 8.933 8.483 8.072 9.494 9.145 8.830
GatedGCN 1.388 0.781 0.519 3.725 3.221 2.727 7.313 6.829 6.475 8.383 7.873 7.648 9.088 8.712 8.506
GatedGCNa 1.083 0.609 0.385 3.890 3.096 2.641 7.066 6.576 6.215 7.997 7.617 7.272 8.547 8.194 7.886

MLP+AS 1.764 1.109 0.704 4.509 3.760 3.221 7.972 7.450 7.075 9.323 8.848 8.481 9.886 9.464 9.199
GCN+AS 1.772 1.041 0.645 4.573 3.857 3.303 8.040 7.532 7.092 9.002 8.371 8.122 9.424 9.115 8.790
GAT+AS 1.788 1.151 0.802 4.556 3.871 3.389 7.980 7.443 7.113 8.951 8.490 8.200 9.470 9.072 8.811
GatedGCN+AS 1.435 0.901 0.638 4.361 3.642 3.065 7.844 7.291 6.926 8.888 8.398 8.055 9.453 9.114 8.810
GatedGCNa+AS 1.190 0.568 0.315 3.719 3.033 2.576 7.113 6.513 6.208 8.195 7.668 7.437 8.816 8.426 8.184

EdgeGAE (ours) 0.958 0.539 0.280 3.568 2.768 2.382 6.864 6.425 5.992 8.100 7.562 7.224 8.438 8.108 7.837
EdgeGAE+AS (ours) 0.949 0.525 0.280 3.466 2.856 2.354 6.719 6.220 5.767 7.759 7.325 6.939 8.318 7.908 7.697

Tr
ai

n
w

ith
10

k
Da

ta

MLP 1.933 1.208 0.811 4.572 3.783 3.223 8.188 7.635 7.284 9.454 9.008 8.632 9.934 9.519 9.203
GCN 1.761 1.123 0.723 4.721 3.957 3.490 7.908 7.287 6.951 9.004 8.503 8.140 9.349 8.946 8.732
GAT 1.930 1.268 0.805 4.677 3.979 3.526 7.917 7.325 7.019 8.963 8.536 8.241 9.433 9.098 8.766
GatedGCN 1.544 0.923 0.589 4.281 3.482 2.975 7.572 6.933 6.667 8.451 7.944 7.713 9.030 8.640 8.370
GatedGCNa 1.283 0.601 0.405 3.953 3.206 2.684 7.371 6.826 6.401 8.416 7.929 7.624 9.114 8.662 8.398

MLP+AS 1.811 1.071 0.719 4.569 3.828 3.337 8.118 7.522 7.214 9.280 8.897 8.543 10.024 9.544 9.235
GCN+AS 2.039 1.253 0.772 4.536 3.868 3.327 8.002 7.500 7.007 8.996 8.490 8.131 9.521 9.037 8.810
GAT+AS 1.821 1.150 0.821 4.502 3.868 3.369 7.939 7.328 6.956 8.868 8.366 8.164 9.372 8.996 8.789
GatedGCN+AS 1.518 0.882 0.586 4.417 3.743 3.186 7.744 7.105 6.772 8.716 8.306 8.005 9.273 8.977 8.697
GatedGCNa+AS 1.092 0.582 0.271 3.742 3.046 2.632 7.223 6.566 6.239 8.012 7.626 7.260 8.642 8.287 8.014

EdgeGAE (ours) 0.753 0.366 0.247 3.253 2.638 2.257 6.760 6.246 6.009 7.821 7.437 7.074 8.369 7.971 7.718
EdgeGAE+AS (ours) 0.769 0.365 0.208 3.352 2.626 2.233 6.825 6.301 5.946 7.897 7.375 7.128 8.392 8.082 7.748

Tr
ai

n
w

ith
50

k
Da

ta

MLP 1.623 1.052 0.729 4.461 3.805 3.325 8.102 7.634 7.182 9.198 8.841 8.500 9.919 9.513 9.215
GCN 1.858 1.107 0.787 4.603 3.930 3.438 7.920 7.390 7.033 8.876 8.405 8.050 9.342 8.971 8.696
GAT 1.701 1.174 0.802 4.507 3.751 3.288 7.889 7.379 6.916 8.799 8.439 8.078 9.405 8.951 8.744
GatedGCN 1.285 0.759 0.484 4.318 3.555 3.010 7.532 7.098 6.646 8.503 8.077 7.753 9.007 8.69 8.378
GatedGCNa 0.822 0.415 0.243 3.417 2.785 2.373 6.627 6.196 5.804 7.835 7.405 7.053 8.430 8.072 7.795

MLP+AS 1.621 0.938 0.678 4.510 3.860 3.184 8.131 7.618 7.086 9.208 8.800 8.495 9.874 9.481 9.220
GCN+AS 1.891 1.126 0.727 4.618 3.876 3.514 7.889 7.274 6.985 8.808 8.350 8.062 9.275 8.961 8.737
GAT+AS 1.727 1.098 0.769 4.684 3.830 3.468 8.042 7.499 7.061 9.025 8.543 8.230 9.457 9.110 8.831
GatedGCN+AS 1.281 0.694 0.521 4.124 3.375 3.002 7.530 6.951 6.654 8.462 8.113 7.811 8.972 8.667 8.347
GatedGCNa+AS 0.886 0.486 0.247 3.463 2.812 2.303 7.052 6.483 6.068 7.904 7.400 7.106 8.459 8.105 7.857

EdgeGAE (ours) 0.723 0.311 0.137 3.025 2.330 2.056 6.652 6.071 5.640 7.564 7.112 6.814 8.026 7.785 7.502
EdgeGAE+AS (ours) 0.694 0.323 0.168 3.069 2.463 2.028 6.572 6.089 5.772 7.529 7.170 6.904 8.161 7.754 7.499

a Indicates the usage of explicit edge representations in the message passing process.
The mark (+AS) indicates training the model with the random active sampling strategy in Section 3.3.
4.5. Results and discussion

4.5.1. Comparison against baseline models
The performance of the proposed EdgeGAE versus the baseline

methods in terms of the optimal gap is shown in Table 1. There are four
sets of experiments with different amounts of training data. For each set
of experiments, the results of test cases of different sizes are evaluated
on models trained on the same set of data. The proposed EdgeGAE
shows superior performance compared to other learning-based methods
in most cases of the training data amounts and problem sizes. In
10
the experiment with only 1000 training instances, EdgeGAE achieves
the lowest optimal gap on TSP50, TSP500, and TSP700, regardless
of the sample size. On the TSP100 test dataset, the proposed model
exhibits a slightly inferior optimal gap compared to the GatedGCN
model with explicit edge representations when the sample size of
each case is set to 500 and 1000. One possible reason is that the
small amount of training data is insufficient for the models to learn
enough implicit knowledge, resulting in insignificant differences in
performance between models at small and medium-scale problems.
Among all the baseline methods, the MLP has the highest optimal
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gap, as it is the only learning-based model that solely takes node
features as its input without considering any topology information.
GCN performs worst among all the message passing-based models,
because there is no attention mechanism which can allocate learnable
weights to different neighbors during the message-passing process. In
various scales of problem sizes, the GatedGCN with explicit edge rep-
resentations exhibits significant performance improvement compared
to the original version, revealing the importance of effective edge
embeddings in link prediction tasks. In other words, merely considering
node embeddings in message passing is insufficient for the model to
generalize well on problems of various scales. In the experiment with
5000, 10000, and 50000 training instances, both the EdgeGAE models
trained with and without random active sampling strategy outperform
other baseline methods at all settings of problem scales and sample
sizes. The advantage becomes more notable as the number of training
samples increases. The comparative results in terms of the optimal gap
imply the effectiveness of the combination of the residual gated graph
encoder and the edge-centered decoder model in link prediction for TSP
tasks. Across all four experiment sets, the learning-based approaches
exhibit a decline in performance with the increase of the problem sizes.
The trained models achieve the highest average performance on TSP50
and the lowest on TSP700 test cases.

4.5.2. Sensitivity analysis of sample sizes
To investigate the influence of different sample sizes on the model

performance, we sample 200, 500, and 1000 solutions for each test
case in each group of experiments. Fig. 6 compares the average optimal
gaps of EdgeGAE with different sample sizes under four experimental
settings. It can be observed that a higher number of samples leads
to a lower gap across all scales of test cases. It stands to reason
that increasing the number of sampled solutions for a particular TSP
instance increases the likelihood of obtaining better objective values.
Nonetheless, it is worth noting that a greater number of samples gen-
erally comes with additional computational overhead. Consequently, it
is crucial in real-world applications to balance the model performance
and computational costs. Furthermore, the comparative results also
show that the average optimal gap increases as the problem scale
grows, which is irrelevant to the sample size.

4.5.3. Generalization ability
To demonstrate the ability of EdgeGAE to generalize over larger

instances than it has ever seen, we evaluate the model performance
on TSP700 cases after training on imbalanced data ranging from 50
to 500 cities. In Table 1, the optimal gap on TSP700 serves as the
performance indicator of the proposed model and compared baselines.
It can be observed that given a sufficient number of samples per case,
the proposed model achieves an average optimal gap on TSP700 which
is remarkably close to that of TSP500. Compared to other baseline
methods, the proposed EdgeGAE exhibits a superior ability to general-
ize to large-scale problems. Furthermore, the model trained on a larger
amount of small-scale instances tends to generalize better on large
scales than those with limited training data. Hence, it can be concluded
that the model can benefit from more training data even sampled from
small-scale instances.

4.5.4. Inference time and complexity analysis
We further compare the inference time of the proposed EdgeGAE

and the classical TSP solver on different scales of TSP instances, and
the statistical results are presented in Fig. 7. For each problem size, the
trained EdgeGAE model followed by graph search makes prediction on
1000 unseen TSP instances to obtain feasible solutions. The Concorde
solver performs optimization on the same set of problems for a fair com-
parison. Fig. 7 illustrates the average inference times of two methods
for each test case at five different scales. It is worth noting that on
smaller-sized cases with no more than 100 cities, both the EdgeGAE
and the Concorde solver require extremely short inference times with
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Fig. 7. Average inference time of the EdgeGAE and the classical TSP solver Concorde
on TSP instances of different scales.

a negligible difference. However, as the problem size increases, the
inference time taken by the solver to find an optimal solution grows
exponentially. By contrast, the inference time of EdgeGAE remains
basically constant, which is not affected by the problem size. This result
implies that the EdgeGAE has a significant advantage over traditional
solvers in terms of inference time, especially for solving large-scale
optimization problems with real-time decision requirements. In the
EdgeGAE model, the message passing process for nodes is calculated
according to Eq. (13) with the time complexity of 𝑂(𝑑𝑛 ⋅ | |), where
𝑑𝑛 is the dimension of the node representation, and | | is the size of
the neighborhood. Similarly, the message passing of edges in Eq. (14)
has the time complexity of (𝑑2𝑒 ), where 𝑑𝑒 is the dimension of the edge
representation. Therefore, the overall time complexity for each message
passing layer in EdgeGAE is 𝑂(𝑑𝑛 ⋅ |𝑖| + 𝑑2𝑒 ).

4.6. Ablation study

To investigate the effect of different sampling strategies during
the training process on model performance, we conduct an ablation
study to train each comparison model on the same set of training data
using random shuffle sampling and random active sampling strategies
separately, and evaluate them on different sizes of test cases. The
model performances are compared in Table 1, where each subset of
models without the mark (+AS) is trained with randomly shuffled data
batches, and each subset of models with the mark (+AS) is trained
with batches of data generated via the random active sampling strategy
in Section 3.3. For a fair comparison, both sampling strategies share
the same set of training data in each set of settings. The optimal gaps
of EdgeGAE present noteworthy findings. When the training dataset
is limited to only 1000 instances, the performance of random shuffle
sampling surpasses that of active sampling. One reasonable explanation
is that the active sampling from an extremely small dataset causes the
model to focus solely on a portion of the data, thereby intensifying the
model overfitting on training data. When the training dataset contains
5000 scale-imbalanced cases, the active sampling strategy outperforms
random shuffle sampling significantly in any case of problem scales
and sample sizes. The advantages of active sampling over random
shuffle sampling become less noticeable as the quantity of training
data continues to increase. These results indicate that having a con-
siderable amount of training data can partially mitigate the effect of
scale-imbalanced distributions on model performance, advocating the
necessity of using active sampling strategies on small-scale constrained
datasets with size-skewed distributions.
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5. Conclusion

In this paper, we investigate solving scale-imbalanced TSPs as link
predictions on graphs. To cope with this task, we propose a data-
driven NCO framework named EdgeGAE, which enhances the original
encoder–decoder framework with a residual gated encoder model and
an edge-centered decoder model. The residual gated encoder model
introduces explicit edge embeddings in the message-passing process
for link prediction tasks. It incorporates residual connections and an
edge gated attention mechanism into the vanilla graph convolution.
The edge-centered decoder model replaces the inner product with an
edge-aware decoding strategy, where each edge aggregates information
from its source and target nodes via an edge-centered message-passing
scheme. The proposed EdgeGAE framework enables the input graph
to capture topology information and learn latent representations via
message passing on both nodes and edges for link prediction on TSPs.
To address the scale-imbalanced data distribution issues, we further
introduce an active sampling strategy for the training process. We gen-
erate a scale-imbalanced TSP benchmark dataset with 50,000 instances
and compare the proposed framework with state-of-the-art learning-
based methods. Experimental results on various problem scales show
that EdgeGAE outperforms other baselines in terms of solution quality,
sample efficiency, and generalization ability.

Despite the competitive performance of the proposed method, it
should be noted that there is still a gap between the learning-based
NCO methods and exact solvers. To further improve the model per-
formance with limited training data, we will consider incorporating
semi-supervised learning and reinforcement learning into the learning
process of data-driven NCO approaches. Moreover, existing NCO mod-
els are mostly trained in an offline manner and require all data to be
centralized in a local storage. Considering the increasing demand for
privacy protection, our future work will extend data-driven NCO to
federated learning settings where privacy data is kept locally without
sharing during the learning process. We will also consider NCO with
online optimization to deal with time-varying problems in real-world
applications.
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